Haskell in Green Land: Analyzing the Energy
Behavior of a Purely Functional Language

Luis Gabriel Lima?, Gilberto Melfe?2, Francisco Soares-Neto?,
Paulo Lieuthier!, Jodo Paulo Fernandes?, and Fernando Castor?!

i AF i
A
L "‘\

AN R |
g Green
Software
Lab

Hlgnfl, fmssn, pvjl, castor}@cin.ufpe.br
2 gilbertomelfe@gmail.com, jpf@di.ubi.pt

Centro de
Informatica

UNIVERSIDADE

BEIRA INTERIOR

Global energy system is unsustainable

Bloomberg the Company & ts Products Bloomberg Anywhere Remote Login | Bloomberg Terminal Demo Request

Bloomberg

Technology

Inside the Arctic Circle, Where Your
Facebook Data Lives

By Ashlee Vance ¥ | October 04, 2013

000 O wr

W4

Every year, computing giants including Hewlett-Packard (HPQ), Dell (DELL), and Cisco
Systems (CSCO) sell north of $100 billion in hardware. That’s the total for the basic iron—

Haskell has feelings too!

neurocyte / ghc-android @Watch~ 32 fStar 164 n Code Android iOS Web Backend Hardware

<> Code (D lssues 16 11 Pull requests 1 EE Wiki 4~ Pulse il Graphs

) .))) @ June 26,2015 ® SECURITY - BACKEND
Build scripts for building ghc cross compilers targeting Android

Fighting spam with Haskell

. Simon Marlaw

i) 76 commits P 1 branch © 0 releases 6 contributors

Branch: master ~ |G IEEG T Newfile Uploadfiles Findfile SSH~ git@github.com:neurocyte/ [Do
E neurocyte Merge pull request #38 from tommyschnabel/master |« Latest commit 3bGadc
One of our weapons in the fight against spam, malware, and other abuse on Facebook is a system
i patches Merge branch ‘master’ of github.com:joeyh/ghc-android called Sigma. Its job is to proactively identify malicious actions on Facebook, such as spam, phishing
E .gitignore Clear-up .gitignore attacks, posting links to malware, etc. Bad content detected by Sigma is removed automatically so
that it doesn't show up in your News Feed.
E) README.md update
B build Build both arm and x86 by default We recently completed a two-year-long major redesign of Sigma, which involved replacing the in-
house FXL language previously used to program Sigma with Haskell. The Haskell-powered Sigma
E build-arch Bumped version for automake H . . . -
now runs in production, serving more than one million requests per second.
=) mirror Add build and mirror scripts

Haskell isn't a common choice for large production systems like Sigma, and in this post, we'll explain
some of the thinking that led to that decision. We also wanted to share the experiences and lessons
we learned along the way. We made several improvements to GHC (the Haskell compiler) and fed
them back upstream, and we were able to achieve better performance from Haskell compared with
the previous implementation.

B EE—————
)

The adventures of Haskell in Greenland

To what extent can we save energy by
refactoring existing Haskell programs to use
different data structure implementations or

concurrent programming constructs?

B EE—————

Experimental Setup

2x10-core Intel Xeon E5-2660 v2

Processors (ivy Bridge) 256GB of DDR3 1600MHz RAM

Criterion

RAPL

Study 1: Purely functional data structures

RQ1. How do different implementations of

the same abstractions compare in terms of

run time and energy efficiency?

RQ2. For concrete operations, what is the

relationship between their performance and

their energy consumption?

Study 1: Edison Library

Collections Associative Collections Sequences
BankersQueue
SimpleQueue
EnumSet . :
StandardSet Bm%%ﬁﬁgtﬂ'm
UnbalancedSet AssoclList)
- - RandList
LazyPairingHeap PatriciaLoMap
. BraunSeq
LeftistHeap StandardMap .
. . FingerSeq
MinHeap TernaryTrie .
ListSeq
SkewHeap
SplayHeap F_2evSeq
SizedSeq
MyersStack

Study 1: Benchmark

iters operation base aux
1 add 100000 100000
1000 addAll 100000 1000
1 clear 100000 n.a.
1000 contains 100000 1
5000 containsAll 100000 1000
1 iterator 100000 n.a.
10000 remove 100000 1
10 removeAll 100000 1000
5000 toArray 100000 n.a.
10 retainAll 100000 1000

iters = 0;
while iters < 10
retainAll base aux;
iters++;

320 configurations
3000+ executions

Study 1: Results

N Time ™ Energy

1.2

RQ1. How do different implementations of the same abstractions
compare in terms of runtime and energy efficiency?

Full details on green-haskell.github.io.

RQ2. For concrete operations, what is the relationship between their
performance and their energy consumption?

Energy is proportional to execution time.

B EE—————

http://green-haskell.github.io/

Study 2: Concurrent programming constructs

RQ1. Do alternative thread management
constructs have different impacts on energy

consumption?

RQ2. Do alternative data-sharing primitives
have different impacts on energy

consumption?

Thread management: forkIO, forkOn,
forkQOS

Data sharing: MVar, TVar, TMVar

The Computer Language

Benchmarks Game

9 benchmarks: 10, memory,
synchronization bound

Up to 9 variants per benchmark

9 configurations for # of capabilities

ROSETTACODE.ORG

http://green-haskell.github.io

http://green-haskell.github.io/concurrency-results/?hide64=true

Time (sec)

Small changes can produce big savings

chameneos-redux

120 4
7000
110 —
100 — 6000 —
90 ‘g
80 3 5000 -
=
S
701 M forklO-MVar S 4000- M forklO-MVar
60 I forklO-TMVar 3 I forklO-TMVar
c
50 B forkOn-MVar 8 130004 W forkOn-MVar
>
0 M forkOn-TMVar o M forkOn-TMVar
c
8 po00 //‘/—/‘—‘
30
209 1000
10 -
0 'l I I I I I 0 [I 1 I I I
124 8 16 20 32 40 124 8 16 20 32 40

Number of Capabilities Number of Capabilities

Time (sec)

Faster is not always greener

fasta

7000 -
6000
Il forklO-MVar 2 M forklO-MVar
M forklO-TMVar 3 50004 M forklO-TMVar
M forklO-TVar 5 M forklO-TVar
M forkOn-MVar E 4000 M forkOn-MVar
M forkOn-TMVar 2 M forkOn-TMVar
M forkOn-TVar % 3000 M forkOn-TVar
W forkOS-MVar 5 W forkOS-MVar
20 - M forkOS-TMVar Y 2000 WA M forkOS-TMVar
[forkOS-TVar [forkOS-TVar
10 1000
0 L 1 | I | 1 0 | | 1 | 1 1
124 8 16 20 32 40 124 8 16 20 32 40

Number of Capabilities Number of Capabilities

There is no overall winner

chameneos-redux
7000

6000 |
5000 |
4000 |
3000 |
2000 | ¢
1000 }

Energy (J)

16 20 32 40

Number of Capabilities

124 8

—— forklO-Mvar
= forklO-TMVar

—— forkOn-MVar
—=— forkOn-TMVar

120
100 ¢
80 ¢

- I

40 | o
20
0

Time (sec)

60 r == g

124 8 16 20 32 40

Energy (J)

Time (sec)

600

500
400
300
200 °
100

—— forklO-MVar
—=— forklD-TMVar

14

dining-philosophers

16 20 32 40
Number of Capabilities

forkOn-MVar —=— forkOS-MVar
—o— forkOn-TMVar = forkOS-TMVar

12
10 |
gl

o M om

i

16 20 32 40

124 8

- Number of Capabilities - Number of Capabilities -

Made two tools energy-aware:

GHC profiler
Criterion

Ittogqortoormiit
(Scoresbysund)

Kulusuk
Ammassalik

Population: 56483 (2013)

na | [ttoqgortoormiit
(Scoresbysund)

Haskell programmers: 0 (est.)

" Kulusuk
~" Ammassalik

Haskell has feelings too!

neurocyte ghe-android Owuche w1 ode Android i0S Backend Hard
OCote (lses 8 Paimguss 1 EWe ePue L Gags

© June 26,2015 B SECURITY - BACKEND
Build scripts for buikding ghe cross compilers targeting Android

Fighting spam with Haskell

@78 conms P 1anch Orvioases @ consuaors

imon Masiow
orancn master » - [[TITE Newtle Uplosifies Findme SSHe gitgith.conesrocyte/ B Do
1B newrocye = Lates comm 308adc

One of our weapons In the fight against spam, malware, and other abuse on Facebook is a system
called Sigma. s job is 1o proactively identity malicious actions on Facebook, such as spam, phishing
gognore Cmanup gogrore attacks, posting links to malware, etc. Bad content detected by Sigma is removed automatically so
that it doesn't show up in your News Feed.

i paiches Merge tranch master of gne

README md upaste
B tuks Buse We recently completed a two-year-long major redesign of Sigma, which involved replacing the in-
house FXL language previously used o program Sigma with Haskell. The Haskell-powered Sigma
now runs In production, serving more than one millon requests per second.

B bukdarch 8

Haskell isn't a common cholce for large production systems like Sigma, and in this post, we'll explain
some of the thinking that led o that decision. We also wanted to share the experiences and lessons
we leared along the way. We made several improvements to GHC (the Haskell compiler) and fed
them back upstream, and we were able 1o achieve better performance from Haskell compared with
the previous implementation,

http://green-haskell.github.io

Haskell has feelings too! Study 1: Results

neurocyte / ghc-android Owache u gsw 1w ode Android i0S
©Coe ases 18 Pl equests 1 v Puse Graghs HTime ® Energy

© June 26,2015 B SECURITY - BACKEND 1.2
Build scripts for buiding ghe cross compilers targeting Android

Fighting spam with Haskell

@78 conms ¥ 1anch fy— o 1

BRI o i ecoest | Newtle Uplosifies Findfe SSHe gLgitNe.connerccyte/ B3 Do 0.8

[T S —— Lot comt Sobadc
One of our weapons In the fight against spam, malware, and other abuse on Facebook is a system 0.6

el v bt o aptatters called Sigma. Its job is to proactively identfy malicious actions on Facebook, such as spam, phishing

B gegoe Sp— atiacks, posting links to malware, etc. Bad content detected by Sigma is removed automatically so

o = that it doesn't show up in your News Feed. 0.4

B buis Bk bom aem and x56 by et We recently completed a two-year-long major redesign of Sigma, which invoived replacing the in-
house FXL language previously used to program Sigma with Haskell. The Haskell-powered Sigma 0.2

icencuc p— - now runs in production, serving more than one milion requests per second.
Haskellisn't a common choice for large production systems like Sigma, and in this post, we'll explain 0-r
s0me of the thinking that led to that decision. We also wanted to share the experiences and lessons Y Y
we learned along the way. We made several improvements to GHC (the Haskell compiler) and fed Qﬁ‘p ,J\d\) ajxc-‘
them back upstream, and we were able to achieve better performance from Haskell compared with \a 2 ¢

the previous implementation,

http://green-haskell.github.io

Haskell has feelings too! Study 1: Results

neurocyte ghe-android Owuche w1 Android 105 Web Backend Hardware

OCote (lses 8 Paimguss 1 EWe ePue L Gags mTime W Energy

© June26,2015 ® SECURITY - BACKEND 1.2
Build scripts for buikding ghc cross complers targeting Android

Fighting spam with Haskell

78 commis P abanch y— conrixsors

(SRR v | Newte Upondts | Frate | ss- | giititns comrmrseyw/ B 00

08
[~ Y ——— [P———

One of our weapons in the fight against spam, malware, and other abuse on Facebook s a system 0.6
- pacres pra:

s o Rt called Sigma. Its job s to proactively identify malicious actions on Facebook, such as spam, phishing
B gugnore o gegnore attacks, posting links to malware, etc. Bad content detected by Sigma is removed automatically 5o
o = that it doesn't show up in your News Feed. 0.4
B bk 0 o0 e 86 by et We recently completed a two-year-iong major redesign of Sigma, which involved replacing the In-
house FXL language previously used to program Sigma with Haskell. The Haskell-powered Sigma 0.2
icencuc p—) now runs in production, serving more than one milion requests per second.
Haskell isn't a common cholce for large production systems like Sigma, and in this post, we'll explain 0~

s0me of the thinking that led to that decision. We also wanted to share the experiences and lessons

N o S
we learned along the way. We made several improvements to GHC (the Haskell compiler) and fed 0‘63 aj\ p \)5\.
them back upstream, and we were able to achieve better performance from Haskell compared with ’&*e‘(’ 0519‘ ¢ \“\
the previous implementation. o

Faster is not always greener

fasta

7000 |
70 //
60 — 6000 |
W forklO-MVar 3 I fork|O-MVar
50 W forklO-TMVar 3 %000 W forklO-TMVar
T M forklO-TVar W forklO-TVar
i 40 W forkOn-Mvar g 4000 - W forkOn-MVar
£ M forkOn-TMVar £ B forkOn-TMVar
30 M forkOn-TVar § 30004 M forkOn-TVar
W forkOS-MVar g W forkOS-MVar
20 W forkOS-TMVar 20004 W forkOS-TMVar
I forkOS-TVar I forkOS-TVar
10 1000 -
O T T T 1 0T T T 1
124 8 16 20 32 40 24 8 16 20 32 40
Number of Capabilities Number of Capabilities

http://green-haskell.github.io

Haskell has feelings too! Study 1: Results

neurocyte / ghc-android Owach~ 1 fswr 1 Andr oS Web
©Coe re—— Pl requests 1 v Puse Graps HTime ® Energy
@ June 26,2015 B SECURITY - BACKEND 1.2
Build scripts for buikding ghe cross compllers targeting Android

Fighting spam with Haskell

78 comm P2 beanch y— (=

e - (I Newte Upondts | Frate | ss- | giititns comrmrseyw/ B 00 08

Latest comma 308agc

One of our weapons in the fight against spam, malware, and other abuse on Facebook s a system 0.6

s bt 2 called Sigma. Its job is to proactively identfy malicious actions on Facebook, such as spam, phishing
B gugne - . attacks, posting links to malware, etc. Bad content detected by Sigma is removed automatically so
T = that it doesn't show up in your News Feed. 0.4
B bukd Suagdon oxaeh . We recently completed a two-year-long major redesign of Sigma, which involved replacing the in-
house FXL language previously used to program Sigma with Haskell. The Haskell-powered Sigma 0.
s)) now runs in production, serving more than one milion requests per second.
Haskell isn't a common cholce for large production systems like Sigma, and in this post, we'll explain 0~

some of the thinking that led (o that decision. We also wanted to shar the experiences and lessons

~

N o X
we learned along the way. We made several improvements to GHC (the Haskell compiler) and fed 0‘&\)5 C—‘P‘Q ‘df;;\ ¥ = \c_,z(\ ?ﬁ\i\\ﬁ
them back upstream, and we were able to achieve better performance from Haskell compared with aﬁ‘&(’ (@19‘ 6‘ “\@
the previous implementation. o
Faster is not always greener Small changes can produce big savings
fasta chameneos-redux
. q 1207]
7000 -| 7000
1104
8000 100 6000
M forklO-MVar 3 I forklO-MVar 90 F) 5000
W forklO-TMVar 3 %000 W forklO-TMVar 80 2
= =
g mononar B oo =pindbnd i mooowar o m fora0-var
£ M forkOn-TMVar g M forkOn-TMVar £ 7 H forklO-TMVar 2 I forkiO-TMVar
L forkOn-TV: 8 3000 forkOn-TV. F o504 M forkOn-MVar 8 20004 M forkOn-MVar
8 forkOn-TVar & = W forkOn-TVar H forkOn-TMVar B H forkOn-TMVar
W forkOS-MVar g W forkOS-MVar 40 ﬁ
20 M forkOS-TMVar 20004 M forkOS-TMVar 20 2000
W forkOS-TVar 1 forkOS-TVar 20
10 1000 1000 4
10
[o T T 1 0T T T J O T T T 1 [o T T 1
124 8 16 20 32 40 124 8 16 20 32 40 124 8 16 20 32 40 124 8 16 20 32 40
Number of Capabilities Number of Capabilities Number of Capabiliies Number of Capabilities

http://green-haskell.github.io

